

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

RECEIVED

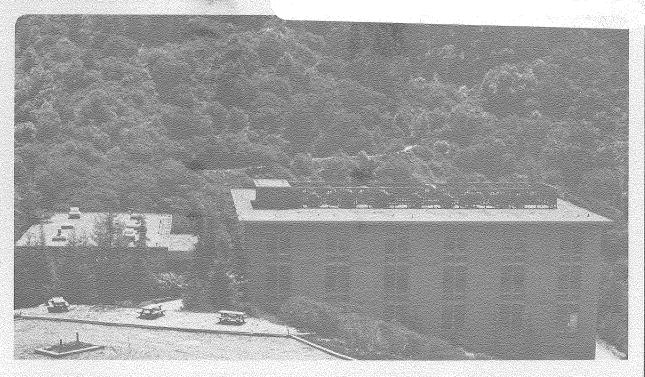
Materials & Molecular Research Division

LABORATORY

UUT 2 1 1980

LIBRARY AND DOCUMENTS SECTION

Submitted to the Journal of Molecular Spectroscopy


PRESSURE BROADENING OF SINGLE VIBRATIONAL-ROTATIONAL TRANSITIONS OF ACETYLENE AT v=5

James S. Wong

February 1980

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

PRESSURE BROADENING OF SINGLE VIBRATIONAL-ROTATIONAL TRANSITIONS OF ACETYLENE AT v=5

James S. Wong

Department of Chemistry,

University of California,

and

Materials and Molecular Research Division

of the

Lawrence Berkeley Laboratory

Berkeley, California 94720

⁷ pages

¹ figure

¹ table

	-	

PRESSURE BROADENING OF C_2H_2

James S. Wong

Department of Chemistry

University of California

Berkeley, California 94720

		- *

PRESSURE BROADENING OF C_2H_2

LIST OF SYMBOLS

v Nu

γ Gamma

PRESSURE BROADENING OF SINGLE VIBRATIONAL-ROTATIONAL TRANSITIONS OF ACETYLENE AT v = 5

must have accurate values of the pressure broadening one must have accurate values of the pressure broadening coefficients as a function of vibrational quantum number. Unfortunately, such data for polyatomic molecules are scarce. The coefficient for self-broadening of methane has been found to be the same for the R(0) and R(1) lines of the $2\nu_3$ and $3\nu_3$ bands and for an unidentified line of the $5\nu_1 + \nu_3$ band at 6190 Å (1). Measurements have also been performed on the ν_2 (2) and $\nu_1 + \nu_3$ (3) bands of acetylene. In the work described here, high resolution spectra of single vibrational-rotational lines of the $5\nu_3$ band of acetylene at 15 600 cm⁻¹ have been taken to determine the coefficients for self-broadening at a much higher level of vibrational excitation.

A single frequency cw dye laser (Spectra-Physics 580A) with Rhodamine B as the lasing medium is used as a narrow bandwidth light source. The laser is continuously scannable over a 10 GHz region with 30 MHz linewidth. The unfocused beam is chopped and directed through a small, nonresonant optoacoustic cell (4). The pressure of the acetylene (> 99.99% purity) in the cell is measured with a capacitance manometer. The optoacoustic signal is detected by a miniature electret microphone placed within the cell and is processed by a lock-in amplifier. The high resolution scans are calibrated (± 5%) by monitoring the dye laser output with a spectrum analyzer

v . ;				
		1		
i				
	45			

equipped with 2 GHz FSR mirrors. All spectra were taken at room temperature (293 \pm 2 K).

At the relatively low pressures used in these experiments, the experimental linewidths are not more than three times the Doppler width (1.1 GHz FWHM). The method of Gronwall (5) was used to calculate values of the Voigt lineshape. With these data, the pressure broadened widths, Δv_p , were extracted from the experimental lineshapes and are plotted as a function of pressure for the R(3), R(9), and R(15) lines in Fig. 1. The lines drawn through the data points were determined by the linear least squares method. The self-broadening coefficients, γ , and their standard errors are summarized in Table I along with the results of other workers.

The values of γ obtained for the $5\nu_3$ rotational lines agree with those of $\nu_1 + \nu_3$ (3), within the experimental errors. When comparing the results of Fabelinsky et al. (2), it must be noted that their broadening coefficient was obtained by plotting the observed linewidths vs pressure for pressures less than 0.5 atm. Since no corrections were made for the coexistence of Doppler and pressure broadening, the actual value of γ is somewhat larger than that reported. Thus within the experimental uncertainties, the coefficient for self-broadening is independent of vibrational excitation over a range of 2 000 to 15 600 cm⁻¹. To test the theories of Giraud et al. (6) and Green (7) discussing the vibrational dependence of pressure broadening, one would have to determine γ quite accurately to resolve any subtle changes that may exist.

·			W.

Acetylene is an excellent polyatomic molecule for a detailed experimental study since the rotational structure of the overtone spectra is readily resolved and the absorption cross sections of single rotational lines are large.

ACKNOWLEDGMENTS

This work was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract No. W-7405-Eng-48. The author would like to thank Professor C. Bradley Moore for helpful discussions of this manuscript and the regents of the University of California for a fellowship.

		u .
		9

REFERENCES

- (1) J. Gelfand, W. Hermina, and W.H. Smith, Chem. Phys. Lett. 65, 201-205 (1979).
- (2) V.I. Fabelinsky, B.B. Krynetsky, L.A. Kulevsky, V.A.

 Mishin, A.M. Prokhorov, A.D. Savel'ev, and V.V. Smirnov,

 Opt. Commun. 20, 389-391 (1977).
- (3) P. Varanàsi and B.R.P. Bangaru, J. Quant. Spectrosc.

 Radiat. Transfer 15, 267-273 (1975).
- (4) C.F. Dewey, Optoacoustic Spectroscopy and Detection,
 Y.H. Pao, ed., Chapter 3, Academic Press, New York, 1977.
- (5) S.S. Penner, Quantitative Molecular Spectroscopy and
 Gas Emissivities, 51-53, Addison-Wesley, Reading, MA,
 1959.
- (6) M. Giraud, D. Robert, and L. Galatry, J. Chem. Phys. <u>59</u>, 2204-2214 (1973).
- (7) S. Green, J. Chem. Phys. 70, 4686-4693 (1979).

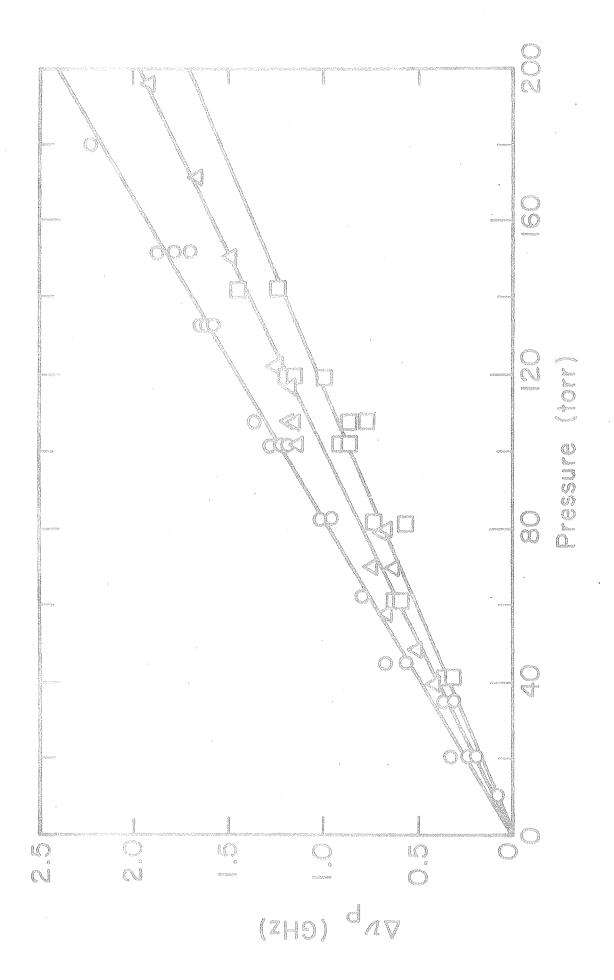
			3

TABLE I

Self-broadening coefficients of acetylene at room temperature

/ibrational	Rotational	Energy	Reference	γ	
Band	Line	(cm ⁻¹)		(MHz torr ⁻¹)	
and the second of the second s	R(3)	ge dehr frieden versichen der versichen der versichen der versichen der versichen der der versichen der der versichen der versic	ga 44 digya galami-mistany izany izany izany azy ara ga matambana anay ara ana ana ana ana ana ana ana ana ana	12.1 ± 0.3	
5v3	R(9)	15 600	This work	9.89 ± 0.46	
~	R(15)			8.48 ± 0.76	
	R(5)			10.7 ^b	
	R(7)			9.8 ± 0.2	
	R(9)		•	10.2 ± 0.2	
	R(11)		• .	10.1 ± 0.2	
	R(13)			9.5 ± 0.3	
v ₁ + v ₃	R(15)	6 560	(3)	9.8 ± 0.2	
a d	R(17)			7.7 ± 0.3	
•	R(19)			7.1 ± 0.6	
	R(21)		**	7.5 ± 0.7	
v_2	Q branch	1 972	(2)	8.3 ^a ,b	

^aSee text.


^bNo uncertainties were given.

		*

FIGURE CAPTION

Figure 1. Room temperature self-broadened widths, $\Delta\nu_p, \mbox{ vs pressure for the R(3) (0), R(9) (Δ) and R(15) (\Box)} \\ \mbox{rotational lines, respectively, of the 5ν_3 band of acetylene.}$

			. *

Tosci.

		y - 18
		т . А
		; ⁶